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ABSTRACT 
The coastal waters of the southeastern United States contain important protected habitats and 
natural resources that are vulnerable to climate variability and singular weather events. Water 
clarity, strongly affected by atmospheric events, is linked to substantial environmental impacts 
throughout the region. To assess this relationship over the long-term, this study uses an 
artificial neural network-based time series modeling technique known as non-linear 
autoregressive models with exogenous input (NARX models) to explore the relationship 
between climate and a water clarity index (KDI) in this area, and to reconstruct this index over a 
66-year period. Results show that synoptic-scale circulation patterns, weather types, and 
precipitation all play roles in impacting water clarity to varying degrees in each region of the 
larger domain. In particular, turbid water is associated with transitional weather and cyclonic 
circulation in much of the study region. Overall NARX model performance also varies – 
regionally, seasonally and interannually – with wintertime estimates of KDI along the West 
Florida Shelf correlating to the actual KDI at r>0.70. Periods of extreme (high) KDI in this area 
coincide with notable El Niño events. An upward trend in extreme KDI events from 1948-2013 is 
also present across much of the Florida Gulf coast. 
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1. INTRODUCTION AND BACKGROUND 

The coastal waters of the Southeastern U.S. encompass important habitats and resources for 
marine animals and plants as well as for human beings. Within this system are many marine and 
estuarine resources, including coral reefs, beaches, seagrasses, wetlands, and fisheries that 
provide critical functions and value to tourism and the economy (Causey 2002). However, data 
from the NOAA National Centers for Environmental Information (2015) indicate that this region 
has led the nation in negative economic impacts of climate/weather disasters between 1980 
and 2014, with much of the damage resulting from tropical cyclones. One of the immediate 
impacts of these natural disasters is on coastal water clarity, as substantial sediment 
resuspension and coastal runoff often lead to significant degradation in water clarity, thus 
affecting all marine animals and plants that rely on ambient light (see Short and 
Wyllie-Escheverria 1996). Indeed, one of the long-term goals of the Tampa Bay Estuary Program 
has been improving water clarity to foster seagrass growth through regulating nutrient releases, 
which has resulted in tremendous progress (Greening et al, 2011 & 2014). Monthly water clarity 
data have been used as one of the inputs to form a decision matrix to help make management 
decisions (Janicki et al., 2000). Likewise, water clarity also has a direct impact on coral reef 
health as it determines the amount of available light in both the visible and ultraviolet 
wavelengths to the benthos (Barnes et al., 2015). Due to its importance, assessment of the 
long-term trend of water clarity in these environments is a priority. 

The inherent role of climate on coastal water conditions and processes is often best understood 
in the context of singular weather events and/or extremes in regional climate. For example, 
changes in distribution patterns of chlorophyll, particulate and dissolved matter, and other 
bio-optical properties across the Southeastern and Gulf coasts are often the result of regional 
events: tropical cyclones, extreme heat and cold events, and winter storms (Lohrenz et al. 1999, 
Liu and Weisberg 2005, Ault 2006, Hu and Müller-Karger 2007, Conmy 2008, Lirman et al. 2011, 
Sheridan et al. 2013; Pirhalla et al., 2014). Sheridan et al. (2013) used a synoptic climatological 
classification to connect variability in atmospheric circulation pattern frequencies across the 
southeastern US to anomalies of chlorophyll off the west coast of Florida using Sea-viewing 
Wide Field of View Sensor (SeaWiFS) data. Particularly evident were the statistically significant 
associations between cyclonic/anticyclonic circulation pattern frequencies and chlorophyll 
levels across part of the study region. While these correlations suggest short-term variability in 
water parameters can be related to changes in atmospheric circulation, as yet unexplored are 
the impacts that climate change trends have upon water parameters in the region. 

Such analysis, however, is difficult due to lack of long-term synoptic datasets of coastal water 
clarity. The use of satellite observations is perhaps the only way to routinely provide systematic 
assessment of coastal water changes, however, reliable, uniform data on water clarity is only 
available since 1997 with the launch of the SeaWiFS satellite. Even within the last 20 years, 
satellite-derived water clarity data are only available under clear skies, making the data set 
spatially and temporally incomplete, rendering the evaluation of water clarity trends particularly 
difficult. 
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To more properly assess trends and spatiotemporal variability in water clarity, in this paper we 
utilize a novel approach to reconstruct a 66-year (1948-2013), daily-scale estimate of water 
clarity for the coastal waters of the southeastern United States. Specifically, we use the 
available historical observations of water clarity, along with their statistical relationship to 
atmospheric circulation over the region to develop a non-linear, neural-network-based, 
time-series model to recreate a complete historical time series of water clarity. 

2. DATA AND METHODOLOGY 

Non-linear autoregressive models with exogenous input (NARX models) were chosen to define 
the relationship between climate and water clarity in each region. While considerable detail is 
provided below outlining the specific methodology used and decisions made to optimize the 
NARX models used herein, a detailed discussion of these models is beyond the scope of this 
paper [please see: Maier and Dandy (2000) for a thorough discussion of artificial neural network 
models in general, Diaconescu (2008) for a discussion on NARX modeling, and Beale et al. 
(2014) for a description of implementing NARX models in Matlab specifically]. While not 
commonly used in applied climatological or oceanographic research, the structure of NARX 
models still contain a predictand variable that we aim to model (the time-series of a water 
clarity index in each region), and multiple predictor variables (time-lagged climate-related 
variables) that are used in the model itself. In the sections that follow, the data used as 
predictand and predictors are discussed, followed by the set-up of the NARX models. Due to the 
subdomain-scale variability in the relationship between meteorological factors and water clarity 
(Table 1), a separate model is produced for each of the regions, as defined below. 

2.1 – Kd-Index and Regionalization 
Water clarity in the study area (southeastern United States) was defined through the calculation 
of a Kd-Index (KDI), derived using SeaWiFS and Moderate Resolution Imaging 
Spectroradiometer (MODIS, onboard the satellite Aqua) data. Kd(λ) (m-1) is a measure of the 
attenuation of downwelling light at a certain wavelength λ (nm), which defines how fast light 
disappears when it propagates through the water. Light availability at a certain depth z (m), 
referenced against the surface light, is proportional to exp(-Kd⋅z). Higher Kd values indicate 
lower water clarity. Level-2 remote sensing reflectance (Rrs) data from SeaWiFS and MODIS/A 
within the bounds of 24° to 31°N, 78° to 98°W were downloaded from NASA Goddard Space 
Flight Center. Pixels with negative Rrs at any wavelength were excluded from analysis, as were 
pixels identified by standard Level-2 processing flags (Patt et al 2003, see Barnes and Hu 2015 
for specific flags used), and targets deeper than 50m. The standard Kd_lee algorithm (Lee et al. 
2005, Lee et al. 2009) and the Kd_lee modification optimized for optically shallow water (Barnes 
et al. 2013) were applied to the mapped Rrs data to derive Kd(488) (i.e., Kd at 488 nm) for 
optically deep and optically shallow targets, respectively. A 5 x 5 median filter was applied to all 
Kd(488) scenes, whereby pixels were also excluded if any previously masked pixels (either due to 
negative RRS or Level-2 processing flags) were within the 5 x 5 box with the pixel of interest in 
the center. Using both SeaWiFS and MODIS data, daily mean images were created for each day 
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from 1997-2013. From these mean images, mean and standard deviation climatologies 
(spanning all years) were calculated for each ordinal day (i.e., day-of-year). In the creation of 
these climatologies, data from the preceding and following 17 ordinal days were used. KDI were 
calculated for each pixel on each day in the time series as 
[(mean-mean_climatology)/standard_deviation_climatology]. 

In addition to the near-daily KDI used in the modeling analysis below, monthly averaged KDI 
values for each grid point in the domain were calculated for the purpose of stratifying 
climate-KDI models and results from over 260,000 pixels into 9 more-manageable geographical 
regions. Following a two-part clustering procedure common in synoptic climatology (Jiang et al., 
2011; Lee and Sheridan, 2011; Sheridan et al., 2013; Sheridan and Lee, 2014), we used a t-mode 
decomposition of the data (grid points as rows, and months as columns, with each cell 
therefore representing a monthly KDI value for a grid point) to perform an initial principal 
components analysis (PCA) on the MODIS satellite data (2002-2013), replacing any missing 
values with the mean. The 31 principal components (PCs) with eigenvalues greater than one 
(accounting for 67.3% of the variance in the data set) were retained for use in a subsequent 
cluster analysis, using the Two-Step Clustering component in SPSS Statistical Software (SPSS, 
2001). Multiple realizations of the cluster analysis were undertaken with varying numbers of 
clusters/regions, with 9 regions ultimately being chosen, as it represented the most spatially 
cohesive and intuitive realization, with the regions broadly corresponding to adjacent drainage 
basin domains. These spatially coherent regions, based upon observed patterns in KDI variance 
within the domain, formed the basis for the regional boundaries demarcated in Figure 1. Note 
that while all optically shallow waters (those processed using the modified Kd_lee; Barnes et al. 
2013) clustered within region 8, the boundary used for switching between the standard and 
modified Kd algorithms is not the same as the boundary of region 8. 

Daily regional KDI were then calculated for each region based on the mean value of all available 
pixels; generally well below 100% due to clouds and satellite coverage. Through statistical trials, 
it was determined that if at least 5% of pixels in a region were available on a given day, the 
mean KDI of that subset was not statistically different from the overall mean. Thus, prior to 
further analysis, all days on which less than 5% of the pixels were available in a region 
(eliminating about 13% of the days with some pixels) were eliminated (marked as missing), 
leaving total temporal coverage of the KDI at about 67% of days (the other 20% are days which 
had no satellite data). As cloud cover reduces satellite data availability and is affected by 
atmospheric conditions, the circulation patterns and weather types (discussed below) 
associated with clearer weather conditions have a greater relative sample size of KDI. 

2.2 – Circulation Pattern Data and Classification Methodology 
In order to classify atmospheric circulation patterns (CPs), daily gridded mean sea-level pressure 
(SLP) data were obtained from the NCEP/NCAR Reanalysis 1 project (Kalnay et al. 1996) for the 
spatial domain bounded by 20°N to 40°N and 100°W to 60°W, at a resolution of 2.5° x 2.5°, for 
all days from 1 January 1948 through 23 August 2013. These SLP data were then converted into 
spatial anomalies – subtracting the daily, domain-wide mean SLP from the SLP for each 
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individual grid point on that day – thus, creating fields of SLP gradients that depict overall flow 
direction and magnitude within the domain. 

Following the methodology detailed by Sheridan et al. (2013), and similar to the regionalization 
process described in the section above, these spatial anomalies of SLP (more simply referred to 
as SLP hereafter) were then subjected to a two-part clustering procedure whereby an initial 
s-mode-based (days as rows, grid points as columns) PCA was undertaken to reduce data 
dimensionality and yield orthogonal principal component scores (PCs) necessary for clustering. 
The 10 PCs with eigenvalues greater than one (accounting for 96.1% of the variance in the data 
set) were retained for the second part of the classification, whereby the Two-Step Clustering 
component was employed, effectively classifying each day in the data set into one of 10 
circulation patterns based upon the similarity of the shape of daily SLP-gradient patterns in the 
domain (Figure 2). 

2.3 – Other Climate Data 
In addition to CPs, to incorporate the smaller-scale weather conditions interacting with the 
ocean surface, two other sources of climate data were used to help model water clarity in the 
region: surface weather types and precipitation. Daily calendars of surface weather type data 
were obtained from the Spatial Synoptic Classification (SSC; Sheridan 2002) homepage 
(http://sheridan.geog.kent.edu/ssc.html) for the six weather stations labeled in Figure 1. The 
SSC uses four-times daily values of six different near-surface meteorological variables in order to 
classify each day at a location into one of several different multivariate weather types (WTs): 
DM (dry moderate), DP (dry polar), DT (dry tropical), MM (moist moderate), MP (moist polar), 
MT (+, ++) (moist tropical, [plus, double plus]); TR (transition) signals a change between two 
weather types. Since precipitation is not directly accounted for in either CP or WT data, daily 
precipitation amounts (PRCP) were obtained from the NOAA National Climatic Data Center (now 
National Centers for Environmental Information) for each of the same six weather stations from 
which SSC data were obtained. In addition to raw daily PRCP, a binary variable was created to 
demarcate days on which PRCP>20mm as heavy precipitation events (HPEs) for each location. 
All WT, PRCP, and HPE data are obtained for the same 1948-2013 period as outlined above. 

2.4 – Potential Predictors, Missing Data Treatment, and Input Variable Selection 
Potential predictors in the NARX model for each region included dummy variables for each of 
the 10 CPs and the 10 retained PCs used in the classification of CPs. In addition, each region’s 
potential predictors included PRCP, HPEs, and dummy variables for each of the SSC WTs for the 
station corresponding to each region (Figure 1). Missing precipitation data (and HPEs) for Key 
West Airport (EYW) for 1953-1957 were substituted with precipitation from the nearby Key 
West City Bureau data record; and for three days in September 1998 with data from Duck Key. 
Missing SSC data for EYW from 1948-1960 was filled with SSC data from Miami (MIA). Missing 
precipitation data for New Orleans (MSY) on 2 May 1998 was set to 0mm based upon inspection 
of nearby station data. 

Input variable selection (IVS) for each region was conducted using partial Spearman correlations 
(a variant on one of many possible IVS procedures suggested by May et al. 2011) of the 
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5-day-prior moving averages between each of the potential predictor variables and a ‘filled KDI.’ 
Filled KDI was computed to replace any missing actual KDI values using simple linear 
interpolation between days available in the actual KDI record for each region. Potential 
predictor variables for each region that showed significant (p<0.001) partial correlation with the 
filled KDI were selected as the final predictors in the model for each region (see supplementary 
material Table S.1). Dummy variables for month are also included in each region’s model to 
incorporate any important seasonal interactions between predictors and KDI. As is standard 
when using NARX models, each potential predictor variable is then normalized throughout the 
1948-2013 period to fit within the range of -1 to +1 (using the ‘mapminmax’ function in 
Matlab). 

2.5 - NARX Model Set-up and Decisions 
NARX models are time series models that incorporate the autoregressive nature of KDI and that 
of the climate variables in order to model the non-linear relationship between predictors and 
predictand. NARX models use an iterative training process whereby weights assigned to input 
variables and bias terms are iteratively adjusted to improve model performance at each step. 
The entire NARX model development process used herein was completed using functions in the 
Matlab Neural Network Toolbox (version R2013b) and is outlined in Figure 3. The 
Levenberg-Marquardt backpropagation algorithm was used for optimization during training, as 
it is among the fastest backpropagation algorithms for feedforward networks (Mathworks 2014, 
Hagan and Menhaj 1994, Beale et al. 2014), especially in Matlab (Mathworks 2014). All training 
of the NARX models in each region was done on time-blocks of KDI and climate data from the 
satellite record only (i.e., since September 1997). Once fully trained, these models were then 
run (using the finalized weight and bias terms learned during training) for the entire 1948-2013 
time series. 

Two user-defined parameters must be determined prior to training each NARX model: the 
number of neurons in the hidden layer (h), and the number of delays included in the model (d). 
The former parameter indicates the degree of complexity to be incorporated into the modeling 
framework, while the latter simply indicates the amount of lag (in days) that is to be 
incorporated into the time-series model for predictors and predictand. However, the ideal 
settings for these parameters are not evident without experimentation. Therefore, a model with 
each of the 16 possible combinations of h=1 to h=4 and d=1 to d=4 was trained. Setting the 
maximum of both parameters (h and d) to 4 was one of several measures taken to prevent 
overfitting, as each additional parameter (i.e. delays, neurons, input variables) adds complexity, 
and the closer that the total number of effective parameters is to the sample size of the training 
data set, the more likely the model will be overfitted (Maier and Dandy, 2000; 2001). Since 
training proceeds using a random initialization (leading to slightly different outcomes with each 
model), each of these 16 models were trained using multiple (10) permutations (p), which will 
be used later for ensemble averaging. 

Prior to training each model, all time series were divided into three separate ‘time-blocks’ of 
data, representing the training-, validation-, and testing-blocks of the time series. Training-block 
data were used for the ‘learning’ part of neural-network modeling where weights and biases of 
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the neural network were incrementally adjusted during each epoch to improve (decrease) the 
mean squared error (MSE) of the training portion of the data. After each adjustment of the 
model’s weights and biases, the updated model was then run on the validation-block of the 
data set. If, after 20 epochs of training and validation, the MSE of the model run on the 
validation-block of the data failed to improve (decrease), then the model with the lowest MSE 
(i.e., the model trained 20 epochs ago) was selected as the best model and training stopped. If 
the MSE of the validation data set did improve, then training continued, and this iterative 
process continued in this manner until this qualification was met (i.e., there was no better 
model in 20). Incorporating an ‘internal-validation’ step in this manner prevents overfitting of 
the model onto the training block of the data set (Beale et al. 2014); since it was also the best 
model in 20 with the internal validation block of the data set. Further, the testing-block of the 
data was held out from training (and internal validation), and thus can be considered 
completely independent from the training process, and model performance (e.g. Table 2 and 
section 2.6) is quantified only using these testing-blocks of the data set. 

Since interannual variability impacted model performance, each model was also run using 32 
different settings for the partitioning of the data into the time-blocks of training, validation, and 
testing data sets, whereby training was completed using all but two different year-long blocks of 
the data set, with one year held out each for validation and testing purposes. Thus, for each 
region, 5,120 different models were trained, one for each combination of neurons, delays, 
time-block division settings, and permutations; equating to over 46,000 models across the 
entire nine-region domain. 

Each of these models was first trained using an ‘open-loop’ format on data from 1997-2013 
(covering the availability of SeaWiFS and MODIS data), meaning actual KDI values at previous 
lags (delays) are used during the training process. While this would be ideal for applications 
where previous values of KDI are available, the goal of the research herein was to extend the 
KDI back to 1948 using climate as the driver. However, reliable estimates of KDI were only 
available back to the beginning of the SeaWiFS time series (September 1997), and thus a key 
component of the model – the previous days’ values of KDI – would be missing from 1948-1997. 
Thus, after training was completed on open-loop, each model was then trained using a 
‘closed-loop’ format initialized from the open-loop model’s final state. A closed-loop format of 
the model feeds back the previous days’ values of modeled KDI into the model rather than the 
actual KDI during the training process in order to incorporate the autoregressive nature of KDI. 
While the closed-loop training could have been completed without first using the open-loop 
format, the selected method resulted in a reduction of computational time by a factor of about 
60 in preliminary analyses, yielding a possible savings of over 68 weeks of modeling time in the 
final analysis. After training on closed-loop over the 1997-2013 portion of the time series, each 
fully-trained model was then run on closed-loop for the entire 1948-2013 time period. Since 
closed-loop simulation would fail if there were any missing predictor variables, any missing 
SSC-WT days (only 0.6% of all days/locations) were set to 0 for each WT’s dummy variable on 
that day. 

8 



             
                 

              
              

    

                
              

             
             

              
                
               

          

         
           

               
          

                
             

            
           

             
             
                

             
                
               

               
              

               
        

               

    

          
             

           
                  

                
                 

 

Preliminary analyses revealed that a small percentage of individual models’ KDI output varied 
around an implausibly high or low KDI value over the course of years to decades. Thus, once 
closed-loop simulation was complete, any model with an average annual KDI>1 or KDI<-1 for 
any calendar year between 1948-2013 was discarded and another was fully trained through all 
of the aforementioned steps. 

Once all 5,120 models were fully trained, the ideal number of neurons and delays for modeling 
KDI in each region were selected (i.e., a winning model-architecture; Table S.2 in supplementary 
material). The winning model architecture was determined by averaging the MSE of the 
different testing-block portions of the 320 (10 permutations x 32 settings) closed-loop trained 
models for each of the 16 possible model-architectures (h=1:4 and d=1:4), with the lowest 
averaged MSE of the 16 determining the winner. This winning set of 320 models was then 
averaged on a day-by-day basis (ensemble mean), and used as the final model ensemble time 
series and the reconstructed KDI from 1948-2013 for each region. 

2.6 – Independent Model Validation using a Block-Jackknifing Technique 
In addition to providing a temporally-robust determination of the winning model-architecture, 
the block-division of the data into 32 different time-block division settings also allowed for an 
independent evaluation of ensemble model-performance across the entire 1997-2013 time 
series by using a ‘block-jackknifing technique.’ Since each of the 32 settings used one of 16 
different year-long periods as a testing-block, each year-long period was used exactly twice 
specifically as the independent testing-block. Additionally, each setting of the winning model 
underwent 10 permutations. Together, this yielded 20 separate testing-block representations of 
each day from 1997-2013 that can be considered independent of the model-training process. 
We chronologically-reconstructed the output of these testing-block time periods of each of the 
320 closed-loop simulation models into a set of 20 time series that span the entire 1997-2013 
period and calculated day-by-day (ensemble) means of these time series (i.e. an independent 
testing-block time series), and report these results below as well. Important to note is that this 
testing-block time series is different from the final model ensemble time series, as the former 
was reconstructed from the separate testing-block portions of the data sets, while the latter was 
made up of the entire time series (i.e., the training-, validation- and testing-block portions of 
the time series) for each of the 320 model ensemble members. Correlation analyses with the 
chronologically-reconstructed testing-block (‘block-jackknifed’) time series, therefore, gives an 
estimate of the confidence with which the 66-year historical KDI time series can be modeled. 

3. RESULTS AND DISCUSSION 

3.1 – Circulation patterns, SSC types, and correlations with KDI 
Ten circulation patterns (CPs; Figure 2) were identified, spanning the range of weather 
conditions observed across the domain. These include several strong cyclonic patterns: 
centered in the Ohio River Valley (CP 6), the Gulf of Mexico (CP 3), the Southeastern Coast (CP 
2), and the Mid-Atlantic (CP1). Strong continental anticyclones can be observed in CPs 4, 5, and 
10; CPs 7, 8, and 9 all are manifestations of the Bermuda High. Correlations between weekly KDI 
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and the circulation patterns show a broad tendency for increased KDI (i.e., poorer water clarity) 
associated with the cyclonic patterns, and decreased KDI for the anticyclonic patterns (Table 1), 
though considerable spatiotemporal variability exists, with the strongest correlations observed 
in the winter months. High KDI values could be the result of high chlorophyll-a (or colored 
dissolved organic matter, CDOM) concentrations in association with cyclonic conditions and 
windy weather that churn up nutrients or increase nutrient load via runoff, a result noted in 
Sheridan et al. (2013). 

Correlations between SSC frequencies and weekly-aggregated KDI also yield statistically 
significant results across multiple categories. Generally, the WTs associated with more stagnant 
conditions (MT, MT+, MT++) are associated with clearer water (Table 1); while rainier patterns 
(such as MM or MP) are associated with higher KDI values. The TR type has the greatest 
positive correlations and the most significant results, particularly along the west coast of Florida 
– unsurprising considering the inherently unstable and windy conditions of the TR weather type 
would likely churn up benthic sediments in the coastal zone, decreasing water clarity. 

3.2 – Development and validation of the KDI time series 
In comparing correlations between observed KDI and modeled KDI (with the testing-block time 
series), the model performed considerably better in all seasons except summer (Table 2), with 
peak ability from November to March. Overall, model performance is best off of the west coast 
of Florida (Regions 5 and 7), and worst in the waters downstream of the Mississippi River 
(Region 3), whose length and catchment area results in longer lags and much greater upstream 
influence, though considerable variability exists spatially as well as interannually. Of particular 
note is the performance of the NARX models in regions 5 and 7 in winter, where correlations 
between the model and observed KDI exceed r=0.70 in some months. Time series (e.g., Figure 
4) show the broad agreement between the observed and modeled data; the model tends to 
render the general patterns well, though underestimates daily variability, particularly in extreme 
events, as evidenced by the difference between the mean absolute error (MAE) and the median 
absolute error (MdAE; Table 2). Hit rates (defined as the match percentage between days that 
were above the 80th percentile of observed KDI and above the 80th percentile of 
NARX-modeled KDI) were near 50 percent for Regions 5 and 7, and between 37 and 46 percent 
for other regions. 

Due to the complex and interactive nature of NARX modeling, evaluating the importance of an 
individual predictor variable in a model is not straightforward (see Olden and Jackson, 2002). 
However, in order to estimate this importance, each of the final 320 ensemble members in each 
region were re-run leaving a single predictor variable set to a constant, and the change in the 
performance (MSE) of the model was noted. This process was repeated for each of the 
predictors in each model, the change in MSEs were averaged across the 320 members in a 
region, and made into a percentage relative to the summed MSE differences of all other 
predictors. In short, this yields a relative importance of each predictor amongst all other 
predictors in a region (Table 3). Among the predictors, SSC WTs play the most prominent role in 
the regions spanning the Louisiana coast to the Florida Keys. Raw precipitation is most 
important in the outer regions of the project domain (Texas and East Florida especially), but 
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HPEs figure prominently only in region 3 (Mississippi River area). The CP classification plays at 
least a moderate role in model performance in every region but region 1, and its estimated 
importance is high in region 5, one of the better modeled areas. It is important to note that in 
NARX modeling, previous-day(s) values of KDI are also used to model KDI. While the relative 
importance of lagged KDI cannot be determined using this method, it likely plays a substantial 
role as well. 

3.3 – Reconstructing the historical KDI 
As noted in the methodology above, all NARX models were run for the full period for which 
historical atmospheric data are available (since 1948; Figure 5). Long-term patterns vary across 
the regions in terms of extreme KDI events (i.e. >80th percentile; Figure 6). Across the western 
Gulf, in Regions 1, 2, and 3, extreme KDI events peaked in the 1970s and 1980s. Contrastingly, 
across the regions east and south of the Florida peninsula (Regions, 7, 8, and 9) there appears 
to be a slight decreasing trend in the long-term frequency of extreme KDI events. Only in 
Regions 4 and 5, across the West Florida Shelf, is a general upward trend in extreme KDI events 
observed. This trend may be associated with the increased wintertime frequency of cyclonic CPs 
(CPs 1, 3, and 6) and TR weather types (at the Tampa weather station), and the secular decline 
in winter MT weather type occurrences in these locations over the 1948-2012 period, though 
trends in other CPs and WTs confound these relationships. Notably strong El Niño Southern 
Oscillation (ENSO) winters (e.g., 1957-58, 1982-83, 1997-98) as defined by the Multivariate 
ENSO Index (MEI; NOAA, 2015) correspond with the greatest sustained, short-term increases in 
modeled KDI in most regions east of Texas (Table 4). This is especially interesting considering the 
models’ relative strength in winter compared to other seasons, and the fact that no ENSO index 
was directly incorporated into modeling. 

4. SUMMARY AND CONCLUSIONS 

This research examines the impact of meteorological variability on a day-to-day water clarity 
index (KDI) in the coastal waters off the southeastern United States. Analyses of individual 
variable relationships to the KDI show that cyclonic circulation and transitional atmospheric 
situations coincide with turbid water; while stagnant, stable conditions lead to greater water 
clarity. A novel modeling methodology using an ensemble of non-linear autoregressive models 
with external input (NARX models) allowed for a 66-year reconstruction of the KDI in each 
region. Overall, surface weather types showed the greatest influence on model performance 
especially in the regions off the west coast of Florida. While total precipitation figured 
prominently into the NARX models in over half of the regions, specific heavy precipitation 
events did not (Table 3). Model performance during periods of actual satellite observation 
(1997-2013) varies by season, region, and inter-annually, but generally models perform best in 
the winter and for the West Florida Shelf, lending more confidence in the historic 
reconstructions in these regions and seasons. Analyses of the historical reconstruction revealed 
higher KDI values during winters with noted ENSO events. While an original premise of the 
research was to investigate the applicability of water clarity as an indicator of climate change, 
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noticeable upwards trends in extreme KDI events were only present in two regions (regions 4 
and 5). 

Non-climatic factors (e.g. land use and land cover changes) undoubtedly account for a 
significant portion of KDI variability, and thus, explain the low correlations for some regions. Of 
particular note are changes in water management strategies over the latter half of the 20th 

century that impact river discharge into the Gulf, especially diluting the effect of precipitation 
on KDI variability in some locations – for example, the managed diversion of Lake Okeechobee 
runoff into Florida Bay starting in 1980 (see Fourqurean and Robblee 1999, Barnes et al. 2014). 
Another potential limitation of the research in finding a consistent climate change signal is the 
relatively short period-of-record of KDI data, especially relative to the longer-term trends 
indicative of climate change. The intermittent nature of the data may also limit the ability of the 
NARX models to incorporate enough lag into the model in each region – this likely leads to 
precipitation (and HPEs) having a less prominent role in the final models than may be expected, 
as the lag between precipitation event and KDI response might not be within the lag periods 
incorporated into the models. Combined, these last two factors (period of record and the 
intermittent nature of KDI) limited the sample size, and thus the complexity (via the maximum 
number of neurons) that could be safely incorporated into any region’s ensemble-member 
models. With a greater sample size of KDI, more complex models could be constructed, perhaps 
yielding better results. Further, cloudy conditions are most often the cause of missing KDI data, 
and thus, the models trained herein may be slightly biased towards days with clear skies, as 
would any water clarity study using such data. However, by incorporating thousands of 
individual pixels into regions as the unit of study (including the clear pixels in an otherwise 
cloudy image), the effect of this bias is thought to be fairly limited. 

Despite these limitations, the novel NARX modeling methodology and the use of synoptic 
weather types and circulation patterns showed promising results, especially in vital ecosystem 
regions along the West Florida Shelf. Future research will aim to further refine these models 
based upon the availability of new KDI and climate data, incorporate anthropogenic factors into 
the models where such data are available, and transport this methodology to investigate water 
clarity in other locations. Further, NARX modeling is easily adapted to make multi-step-ahead 
predictions using the closed-loop framework; hence, mid- to long-range forecasts of water 
clarity using forecast weather data is another likely future avenue, as this could provide valuable 
information to ecosystem managers in these regions. 
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TABLES 

Table 1 – Pearson bivariate correlation statistics between anomalous frequencies of each SSC 
weather type (top) and circulation pattern (bottom) and KDI for each of the nine regions. 
Correlations are for winter months (December-February) only and are aggregated to the weekly 
level. Bold and underlined values indicate statistically significant (p<0.05) correlations. 
Increasingly positive (negative) correlations are darker shades of red (green). 

DM DP DT MM MP MT MT+ 
MT+ 

+ TR 
R1 0.07 0.11 -0.04 -0.02 -0.06 -0.13 -0.10 0.01 0.17 
R2 0.04 0.21 0.01 -0.04 -0.11 -0.14 -0.14 -0.02 0.29 
R3 -0.03 0.05 0.07 -0.02 -0.13 -0.06 -0.04 0.00 0.29 
R4 0.08 0.04 0.03 0.03 0.07 -0.14 -0.16 -0.01 0.08 
R5 0.01 0.14 -0.03 0.19 0.19 -0.27 -0.16 -0.19 0.29 
R6 0.12 0.16 -0.01 0.15 0.21 -0.26 -0.22 -0.23 0.22 
R7 0.30 0.02 -0.05 0.08 0.11 -0.29 -0.24 0.09 0.40 
R8 0.24 -0.02 -0.07 0.03 0.04 -0.20 -0.16 0.05 0.29 
R9 0.19 -0.07 -0.06 0.08 0.17 -0.24 -0.04 -0.05 0.11 

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10 

R1 -0.02 0.00 0.22 -0.06 -0.09 0.06 -0.04 -0.08 -0.05 0.09 

R2 0.16 -0.07 0.16 -0.09 -0.03 0.19 -0.07 -0.10 -0.18 -0.05 

R3 0.09 -0.21 0.16 -0.13 -0.02 0.21 0.01 0.00 -0.15 -0.07 

R4 0.09 0.04 0.06 -0.13 0.00 0.21 -0.07 -0.12 -0.05 -0.07 

R5 0.21 0.13 0.15 -0.25 -0.03 0.12 -0.12 -0.14 -0.11 0.00 

R6 0.24 0.20 0.08 -0.13 0.01 0.00 -0.22 -0.10 -0.13 0.03 

R7 0.22 0.24 0.17 -0.13 0.06 -0.06 -0.21 -0.17 -0.15 0.00 

R8 0.13 0.25 0.11 -0.10 0.01 -0.09 -0.13 -0.09 -0.05 -0.01 

R9 0.00 0.35 0.21 -0.07 0.07 -0.13 -0.14 -0.14 -0.07 0.00 

17 



 MONTH  R1  R2  R3  R4  R5  R6  R7  R8  R9 
 JAN  0.578  0.512  0.456  0.304  0.758  0.451  0.673  0.472  0.432 
 FEB  0.531  0.483  0.401  0.353  0.733  0.451  0.647  0.441  0.396 
 MAR  0.515  0.491  0.373  0.370  0.695  0.454  0.646  0.361  0.407 
 APR  0.472  0.401  0.294  0.329  0.556  0.396  0.567  0.340  0.389 
 MAY  0.358  0.295  0.226  0.323  0.413  0.351  0.431  0.334  0.395 
 JUN  0.257  0.157  0.157  0.312  0.227  0.288  0.265  0.296  0.291 
 JUL  0.281  0.133  0.166  0.195  0.247  0.280  0.289  0.351  0.281 
 AUG  0.460  0.266  0.259  0.099  0.276  0.184  0.348  0.386  0.399 
 SEP  0.524  0.386  0.356  0.134  0.438  0.252  0.467  0.386  0.402 
 OCT  0.596  0.498  0.454  0.329  0.616  0.417  0.588  0.424  0.398 
 NOV  0.629  0.540  0.492  0.371  0.721  0.490  0.680  0.470  0.381 
 DEC  0.624  0.526  0.492  0.340  0.745  0.500  0.727  0.471  0.403 

 ALL  0.470  0.414  0.333  0.403  0.563  0.341  0.531  0.377  0.353 
 BEST  YEAR  0.591  0.621  0.490  0.505  0.723  0.633  0.659  0.528  0.600 

 WORST  YEAR  0.381  0.190  0.166  0.137  0.427  0.155  0.326  0.272  0.168 
 Hit  Rate  45%  44%  38%  46%  50%  41%  50%  37%  38% 

 MdAE  0.326  0.381  0.348  0.391  0.292  0.375  0.262  0.264  0.345 
 MAE  0.426  0.479  0.416  0.494  0.404  0.488  0.408  0.385  0.455 

 

Table 2 - Model evaluati 0'1 statistics based ~pon ensemble testing daita time series 
(1998-2012) for each region. MdAIE is medl'an abso,h,.1te error, MAE is mean absolute error. 
Hit rates ar,e the percent of extr,eme KDI events (days ,on which observed KDI and modeled 
KIDI > 80t h percenti le ,of' their respective tfme series) pred icted by the model. Note that 
monthly and best/worst year correllations are based upon 89-day centered moving 
correlations averaged for each month/year. Overal l! corr,elations are traditional. Ce Is with 
increasingly dark,er gray col,oring signify increas ingly str,onger correlations 
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 R1  R2  R3  R4  R5  R6  R7  R8  R9  AVG 

 CPs  0%  13%  20%  5%  24%  4%  3%  4%  7%  10% 

 WTs  7%  29%  37%  60%  52%  77%  71%  48%  14%  46% 

 PRCP  85%  39% -- -- -- --  23%  36%  78%  32% 

 HPE -- --  16%  2% -- -- -- -- --  0% 

 PCs  8%  20%  27%  33%  24%  19%  3%  13%  2%  12% 

 RANK  YEAR  R1  R2  R3  R4  R5  R6  R7  R8  R9 

 1  1983  9  1  1  9  4  4  1  1  1 

 2  1998  14  2  2  1  1  3  3  11  2 

 3  1992  56  35  37  10  18  28  42  51  30 

 4  1987  54  9  17  7  11  5  5  7  3 

 5  1958  26  3  6  6  2  1  2  2  7 

 

Table 3 - Estimated r,elative importance of predictor variables in the final 
ensemble model for each region .. Blank ce Is ind·cate that the vairiab le was not 
sel,ectied for use in that region's models. 

Table  4  –  Region-by-region  association  between  ENSO  and  wintertime  NARX-modeled  KDI,  
1950-2012.  The  left  column  indicates  the  rank  of  the  top  5  years  of  the  bimonthly  Multivariate  
ENSO  Index  (MEI;  NOAA,  2015)  as  averaged  from  December-January  through  March-April  of  the  
year  indicated  in  column  2.  The  9  rightmost  columns  have  the  corresponding  rank  of  the  
monthly-averaged  modeled  KDI  for  each  region  for  the  December-April  period  of  the  
corresponding  years  (December  of  the  prior  year),  with  a  rank  of  1  being  the  highest  averaged  
KDI  of  the  63  years  ranked.  Bottom  row  shows  Spearman’s  rank  correlations  of  the  MEI  and  the  
monthly  modeled  KDI  values  for  the  months  described  above,  throughout  the  entire  1950-2012  
period.  
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SPEARMAN 
RHO 

0.170 0.647 0.467 0.335 0.561 0.576 0.578 0.483 0.673 
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FIGURE CAPTIONS: 

Figure 1 – The nine KDI regions and corresponding SSC weather stations. 

Figure 2 – Composite averaged anomalous SLP for all days classified into each of the 10 
circulation patterns (CPs). 

Figure 3 - Flow chart depicting the NARX methodology that is repeated for each combination of 
number of delays, number of neurons, and each region. 

Figure 4 – Final model ensemble time series of the 181-day centered moving average actual 
(gray line, right axis) and modeled (black line, left axis) KDI for each region, September 1997 – 
September 2013. 

Figure 5 – Reconstructed 66-year time series of daily (gray line) and 181-day centered moving 
averages (black line) of the ensemble NARX modeled KDI for each region, 1948-2013. Note the 
different scales of the y-axis in each graph. 

Figure 6 – Decade-by-decade counts of extreme KDI events (>80th percentile) in the NARX 
modeled reconstruction time series for each region. 
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